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We describe a new, computationally efficient method for computing the molecular alignment tensor
based on the molecular shape. The increase in speed is achieved by re-expressing the problem as one
of numerical integration, rather than a simple uniform sampling (as in the PALES method), and by using
a convex hull rather than a detailed representation of the surface of a molecule. This method is applicable
to bicelles, PEG/hexanol, and other alignment media that can be modeled by steric restrictions introduced
by a planar barrier. This method is used to further explore and compare various representations of pro-
tein shape by an equivalent ellipsoid. We also examine the accuracy of the alignment tensor and residual
dipolar couplings (RDC) prediction using various ab initio methods. We separately quantify the inaccu-
racy in RDC prediction caused by the inaccuracy in the orientation and in the magnitude of the alignment
tensor, concluding that orientation accuracy is much more important in accurate prediction of RDCs.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Knowledge of protein structure plays a critical role in our
understanding of the molecular mechanisms underlying biological
processes. One of the main methods for obtaining structural infor-
mation at atomic-level resolution is the use of nuclear magnetic
resonance (NMR) spectroscopy for determining structural con-
straints. The NMR-derived constraints, such as NOEs, hydrogen
bonds, and torsion angles, are intrinsically local or short-range
and could be insufficient for accurate structure determination of
biological macromolecules and their complexes due to the scarcity
of long-distance structural information. Residual dipolar couplings
(RDCs), resulting from partial alignment of solute molecules rela-
tive to the magnetic field, provide valuable structural information
in terms of global, long-range orientational constraints [1]. A com-
monly used method for aligning molecules in solution takes advan-
tage of the anisotropy of molecular shape by imposing steric
restrictions on the allowed orientations of the molecule (e.g., by
means of bicelles [2], stretched gels [3,4], or PEG/hexanol-based
media [5]). Such steric alignment can often be modeled as caused
by planar obstacles, and we will refer to this simplified model of
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molecular alignment as the barrier model. The alignment of a rigid
molecule can be described by the so-called molecular alignment
tensor. Accurate prediction of the molecular alignment tensor,
and with it of the RDCs, is important for NMR-based structure
determination and validation as well as applications to dynamic
and disordered systems (see e.g., [6–11]). The sensitivity to molec-
ular shape has the potential for improving structure characteriza-
tion, especially in multidomain systems and macromolecular
complexes (e.g., [12]), by fully integrating RDC prediction into
structure refinement protocols to directly drive structure optimi-
zation. Future progress in this direction critically depends on the
efficiency and accuracy of the alignment tensor prediction.

Several methods for computing the molecular alignment tensor
ab initio, i.e., based solely on the three-dimensional shape of the
molecule, have recently been proposed. In the method by Zweck-
stetter and Bax [13,14], implemented in a program called PALES,
the alignment tensor is computed by uniformly sampling all orien-
tations of a molecule (see e.g., [15]) at various distances away from
a planar barrier, and averaging over only those orientations in
which the molecule’s surface does not collide with the barrier.
The computational efficiency of this method is limited due to the
fact that it must compute collisions between an arbitrary shape
and a plane for every sample in the four-dimensional problem
space.

Simpler methods based on the barrier model, but representing
the shape of the molecule by an equivalent ellipsoid, have also
been proposed. In Fernandes et al. [16], the alignment tensor was
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Fig. 1. Planar barrier model for molecular alignment.
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computed by approximating the molecule as an axially-symmetric
prolate ellipsoid and analytically solving the barrier model for the
alignment tensor. In Almond and Axelsen [17] and Azurmendi and
Bush [18] the barrier method is also used, but the formulae are de-
rived empirically.

Here we describe a new, computationally efficient method for
computing the molecular alignment tensor based on the barrier
model. The increase in speed is achieved by re-expressing the
problem as one of numerical integration, rather than one of simple
uniform sampling. This formulation allowed us to simplify the
problem by reducing its dimensionality from four to two. In addi-
tion to the reduction in computational complexity, numerical inte-
gration has the advantage of (i) allowing control over the size of
numerical error, and (ii) allowing a more efficient sampling of
the problem space [19]. Computational geometry techniques are
used to increase the computational speed further. We will refer
to our method as PATI (Prediction of Alignment Tensor using Inte-
gration). PATI can also be used with an equivalent ellipsoid of the
molecule instead of the full surface. We will refer to this simplifi-
cation as PATI-E. This simplified method is used to explore and
compare various representations of protein shape by a (fully aniso-
tropic) equivalent ellipsoid: based on the gyration tensor [16], the
actual molecular surface [20], or the minimum-volume ellipsoid.

Finally, we examine the accuracy of the proposed methods
(PATI and PATI-E) and the existing ab initio methods for RDC pre-
diction. This analysis separately quantifies the effect of inaccuracy
in the predicted RDCs caused by the inaccuracy in the orientation
or in the magnitude of the alignment tensor. The results obtained
for several proteins show that (i) the predicted RDCs and their
agreement with experimental data are very sensitive to errors in
orientation of the alignment tensor, and (ii) all ab initio prediction
methods tested here give a rather crude estimate of the RDCs.

2. Theory

For a rigid molecule, the molecular alignment tensor A with re-
spect to the magnetic field B is described by a 3� 3 symmetric
traceless matrix [13], sometimes referred to as the Saupe matrix
[21], with the following elements ði; j ¼ 1;2;3Þ:

Aij ¼
1
2
hFiji; Fij ¼ 3 cos hi cos hj � dij; ð1Þ

where hi is the angle between molecular axis i and the magnetic
field B, h. . .i is the average over all possible orientations of the mol-
ecule in solution, and d is the Kronecker delta.

The RDC value DPQ for a specific bond PQ is related to the align-
ment tensor and the bond’s orientation relative to the molecule’s
coordinate frame by the following equation:

DPQ ¼ CPQ

X
i;j

Aij cos /i cos /j;

CPQ ¼ �SLS
l0cPcQ �h
4p2r3

PQ

;

ð2Þ

where /i is the angle between the PQ bond and the molecular axis i,
SLS is the Lipari–Szabo generalized order parameter, l0 is the per-
meability of free space, cP and cQ are the gyromagnetic ratios of
the corresponding nuclei, �h is the reduced Planck’s constant, and
rPQ is the length of the bond. PQ can represent bonds such as NH,
CaHa, CaC0, and C0N.

2.1. The model for the alignment tensor

Given the three-dimensional structure of an arbitrary molecule,
we will focus on the computation of its alignment tensor A, defined
in Eq. (1). We model the planar barrier causing steric alignment of
the molecule as a set of two infinite planes with the surface nor-
mals in the z direction, positioned at a distance 2h from each other.
The molecule is centered around some point m (e.g., its center of
mass), which lies somewhere inside the convex hull of the mole-
cule’s surface. The direction of the magnetic field is given by a unit
vector B, where

B ¼
b1

b2

b3

264
375; b2

1 þ b2
2 þ b2

3 ¼ 1: ð3Þ

Fig. 1 shows a schematic representation of the planar barrier
model. Note that due to the symmetry of the system, the possible
orientations of the molecule positioned between 0 and h along the
z-axis are mirror images (over the x-y plane) of the possible orien-
tations when the molecule is between h and 2h. Thus we can sim-
plify the model by considering only the bottom plane and
positioning the molecule’s center at a height from 0 to h above this
plane.

The orientation of the molecule’s coordinate frame relative to
the Cartesian coordinate system in Fig. 1 can be defined by three
Euler angles a, b, and c, which determine the rotation matrix
Rða; b; cÞ. (See Appendix A.)

For a specific molecule, we define S to be a finite set of sample
points from its molecular surface (e.g., van der Waals surface or
Richards molecular surface), and the center m of the molecule to
be some point inside the convex hull of this molecular surface.
Referring to Fig. 1, to characterize the vertical extent of the mole-
cule under the rotation Rða; b; cÞ around its center m, we define
gða; b; cÞ, to be the difference between the z-coordinate of the cen-
ter of the molecule and the minimum z-coordinate value of all the
rotated points in S:

gða;b; cÞ ¼ �min
sk2S

ðRða;b; cÞðsk �mÞÞ � ½0 0 1 �f g: ð4Þ

Note that gða;b; cÞ sets the lower limit on the height of the center of
the molecule at a given orientation.

We rewrite F, from Eq. (1), in terms of the rotation matrix,

Fijða;b; cÞ ¼ 3ðR1ib1 þ R2ib2 þ R3ib3ÞðR1jb1 þ R2jb2 þ R3jb3Þ
� dij; ð5Þ

and average the F values at height a with the mirror cases of 2h� a
into one equation

Fijða;b;cÞ ¼
3
2
ðR1ib1þR2ib2þR3ib3ÞðR1jb1þR2jb2þR3jb3Þ

þ3
2
ðR1ib1þR2ib2�R3ib3ÞðR1jb1þR2jb2�R3jb3Þ� dij

¼ 3ðR1ib1þR2ib2ÞðR1jb1þR2jb2Þþ3R3iR3jb
2
3� dij: ð6Þ

Due to the symmetry of the system, F can be used instead of F to
simplify our model to just one plane and a height from 0 to h.
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For any rotation Rða; b; cÞ, the center of the molecule cannot be
located at a height between 0 and gða; b; cÞ. Therefore, the range of
interest is from gða; b; cÞ to h. The alignment tensor A is then com-
puted by summing F weighted by the probability of the current
height and orientation, for all allowed orientations and heights
from gða; b; cÞ to h.

We assume equal a priori probabilities of all orientations at all
heights, and write the analytical expression for Aij from Eq. (1).
To obtain a uniform distribution of the Euler angles we multiply
our integrand by the Jacobian J ¼ sin b=ð8p2Þ [22] to obtain

Aij ¼
1

2N

Z c1

c0

Z b1

b0

Z a1

a0

Z h

gða;b;cÞ
FijJ dzdadbdc; ð7Þ

where N is the normalization factor

N ¼
Z c1

c0

Z b1

b0

Z a1

a0

Z h

gða;b;cÞ
J dzdadbdc; ð8Þ

and ½a0;a1�, ½b0; b1�, ½c0; c1� are the ranges in which a,b,c are defined.
2.2. Computation of the alignment tensor: general case

We show in Appendix A, using the Euler z–y–z rotation, that the
expression for the alignment tensor A of an arbitrarily-shaped mol-
ecule can be simplified from a quadruple integral to a double inte-
gral. Specifically,

A11 ¼
Sc

16Np

Z 2p

0

Z 1

�1
ð�3u2 cos2 aþ3cos2 a�1Þgða;arccosuÞduda;

A22 ¼
Sc

16Np

Z 2p

0

Z 1

�1
ð3u2 cos2 a�3cos2 a�3u2þ2Þ

�gða;arccosuÞduda;

A33 ¼
Sc

16Np

Z 2p

0

Z 1

�1
ð3u2�1Þgða;arccosuÞduda;

A21 ¼
3Sc

16Np

Z 2p

0

Z 1

�1
�sinacosað1�u2Þgða;arccosuÞduda;

A31 ¼
3Sc

16Np

Z 2p

0

Z 1

�1
�u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2
p

cosðaÞgða;arccosuÞduda;

A32 ¼
3Sc

16Np

Z 2p

0

Z 1

�1
u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2
p

sinðaÞgða;arccosuÞduda;

ð9Þ

where g is independent of the angle c and

N ¼ h� 1
4p

Z 2p

0

Z 1

�1
gða; arccos uÞduda;

Sc ¼ 1� 3b2
3:

ð10Þ

Because A is a traceless symmetric tensor [13], only A11 and A22,
A21, A31, and A32 need to be computed, while A33 ¼ �ðA11 þ A22Þ,
A12 ¼ A21, A13 ¼ A31, and A23 ¼ A32. One can multiply the alignment
tensor by �0.8 to account for the incomplete bicelle alignment the
order parameter for the liquid crystal), and to match the sign re-
turned by PALES. The height h can be determined by the formula
d=ð2Vf Þ, where d is the barrier thickness (� 40 Å for DMPC/DHPC
bicelles) and Vf ð� 1Þ is the sample volume fraction occupied by
the barriers (see [13,14]).

Thus, all one needs to know in order to compute the alignment
tensor is gða; bÞ, defined in Eq. (4). Being an intrinsic geometric
property of the molecule, gða; bÞ can be computed separately,
regardless of the barrier.
2.3. Computing g

In the PALES approach [13,14], A is estimated based on forming
a mesh of the molecular surface and then rotating all the mesh tri-
angles of this surface to check if any part of the mesh is below the
barrier. Observe that the complexity of each rotation is propor-
tional to the number of triangles in the mesh. It is possible to sim-
plify the mesh using mesh simplification (see [23,24]); however
even this is overly complex. An infinite planar barrier is not sensi-
tive to cavities on the surface of the molecule; therefore, a convex
hull of the molecule is a sufficient representation of the molecule’s
surface. Additional mesh simplifications could be performed on the
convex hull to further reduce the number of points.

To compute g for an arbitrary molecule under a rotation R, we
simply compute the convex hull of the atom positions of the mol-
ecule and consider the vertices of the convex hull as the set S in Eq.
(4). We add the van der Waals radius of the atom associated with
the minimum z-value to Eq. (4) to form g for the rotation R. Fig. 2A
shows the convex hull around the Cyanovirin-N molecule. The
number of points used to represent the molecule drops dramati-
cally, from 40,708 in the molecular surface representation (see
[25,26]), to just 57 in the convex hull representation. For any rota-
tion R, the relative error in g between the two representations is
less than 5% and the absolute error is less than 0.5 Å. Also the align-
ment tensors and the RDCs predicted by PATI (our method) and
PALES are almost identical, as shown below.

2.4. Special case of an ellipsoid

A potential simplification for computing the alignment tensor is
to represent a molecule by an equivalent ellipsoid. In this section
we examine several methods of deriving an equivalent ellipsoidal
representation of an arbitrary molecule.

An ellipsoid E in R3 is defined as

EðE;mÞ ¼ p j ðp�mÞT Eðp�mÞ ¼ 1
n o

; ð11Þ

where E is a 3� 3 symmetric positive definite matrix that defines
the shape of the ellipsoid and m 2 R3 is its center.

The ellipsoid’s semi-principal axes can be derived by an eig-
endecomposition of E, such that

E ¼ VKVT ¼ ½V1V2V3�
k1 0 0
0 k2 0
0 0 k3

264
375½V1V2V3�T ; ð12Þ

where the lengths of the semi-principal axes are a ¼ 1=
ffiffiffiffiffi
k1
p

P b ¼
1=

ffiffiffiffiffi
k2
p

P c ¼ 1=
ffiffiffiffiffi
k3
p

, and V1, V2, V3 are their associated directions
(eigenvectors). The matrix V also represents the rotation matrix of
the ellipsoid from the orientation where it is aligned to the principal
axes of the coordinate frame to the actual orientation.

One method for finding an equivalent ellipsoid of a molecule is
to find the minimum-volume ellipsoid (MVE) that encloses all of
the atoms in the molecule. Several methods exist for computing
MVE [27,28]. When we use the MVE in PATI, we denote the method
as PATI-E.

A second method for constructing an equivalent ellipsoid of a
molecule is to find an ellipsoid with the same gyration tensor as
the molecule. The length of the ith axis of the equivalent ellipsoid
based on the gyration tensor is computed as

ffiffiffiffiffiffiffi
5ki
p

, where ki is the
ith eigenvalue of the gyration tensor. We will refer to the ellipsoid
with an equivalent moment of inertia as the Gyration Ellipsoid (GE)
(see Fernandes et al. [16]).

A third method for finding an equivalent ellipsoid is to fit the
molecular surface. This can be achieved via the Principal Compo-
nent Analysis (PCA) of the coordinates of the points representing



Fig. 2. Convex hull and equivalent ellipsoids for Cyanovirin-N molecule drawn on top of its van der Waals surface. (A) The convex hull around the molecule. (B) The GE
ellipsoid representation. (C) The MVE ellipsoid representation. (D) The PCAE ellipsoid representation with no hydration layer included.

Table 1
Quality factors for the experimental data.

Protein PDBa LSb,c PALES-LSb,c,d

Cellular factor BAF [31] 2ezx 0.03 0.03 (0.00)
B1 domain of protein G [32] 3gb1 0.05 0.05 (0.00)
B3 domain of protein G [33] 2oed 0.04 0.04 (0.00)
Rat apo-S100B [34] 1b4c 0.11 0.11 (0.00)
Cyanovirin-N [35] 2ezm 0.04 0.04 (0.00)
Ga interacting protein [36] 1cmz 0.08 0.08 (0.00)
Ubiquitin [29] 1d3z 0.04 0.04 (0.00)
Hen lysozyme [37] 1e8l 0.06 0.06 (0.00)
Oxidized putidaredoxin [38] 1yjj 0.08 0.08 (0.00)
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the surface of the molecule (see Ryabov et al. [20]). The length of
the ith axis of the equivalent ellipsoid based on this method isffiffiffiffiffiffiffi

3ki
p

, where ki is the ith eigenvalue of the corresponding covari-
ance matrix. We refer to this method as PCAE.

Fig. 2 illustrates the three ellipsoid models of the molecular sur-
face for the Cyanovirin-N molecule.

As shown in Appendix B, for an arbitrary ellipsoid under an Eu-
ler rotation Rða; b; cÞ, gða; b; cÞ can be expressed as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

31a2 þ R2
32b2 þ R2

33c2

q
: ð13Þ
Mean 0.06 0.06 (0.00)

a The RCSB Protein Data Bank code for protein coordinates. First model from the
ensemble of NMR structures was used for all calculations.

b Values represent the quality factor Q between the predicted and experimental
data.

c Values represent the scaled quality factor Qs between the predicted and
experimental data.

d Values in parentheses represent the relative error between eA and the experi-
mental alignment tensor derived using PALES-LS.
3. Results

In this section we present a comprehensive comparison of sev-
eral methods for computing RDCs ab initio. All the RDC data ana-
lyzed here are for the backbone NH bonds located in structurally
well-defined regions of proteins, i.e., the a-helices and b-sheets.
The RDC data were retrieved from the BMRB repository using the
PDB code of the molecule. Only the RDC values measured using
the neutral bicelle alignment medium (or, in the case of the B3 do-
main of protein G, the PEG/hexanol-based medium) are used. The
nine proteins and their codes in the Protein Data Bank are listed
in Table 1.

We assess the quality of our results by computing the quality
factor between the vector of experimental RDCs, Dexp, and our pre-
dicted RDCs for those same bonds, Dpred, as [29]:

Q ¼
Dexp � Dpred

�� ��
2

Dexp

�� ��
2

; ð14Þ

where �k k2 is the l2-norm.
Note that the predicted magnitude of the RDC values depends

on the experimental conditions (they determine the barrier height
h) and selection of values for equation constants, e.g., CPQ . These
factors affect all RDCs approximately uniformly, and hence can
be represented by a scaling factor. Therefore, in order to make
our analysis less sensitive to possible errors in experimental condi-
tions and imperfect selection of values for constants, we also intro-
duce the scaled quality factor to quantify the agreement between
the experimental and predicted data with an unknown scaling fac-
tor. We define the scaled quality factor as
Qs ¼min
q

Dexp � qDpred

�� ��
2

Dexp

�� ��
2

; ð15Þ

where the scalar q can be computed by linear least squares. (Note
that both PATI and PALES can predict the magnitude of RDC values
with reasonable accuracy. See Supplementary material for the val-
ues of q.)

First, we present the Q values for the experimental alignment
tensor. We define the experimental alignment tensor, eA, as the
alignment tensor that optimally fits the data, i.e., gives the lowest
Q value between the experimental and back-calculated RDC data.
This quality factor allows us to examine whether the experimental
data are well approximated by the theoretical equation for RDCs.
We derive eA by solving a linear least-squares problem of the form

ðv1
1Þ

2�ðv1
3Þ

2 ðv1
2Þ

2�ðv1
3Þ

2 2v1
1v i

2 2v1
1v1

3 2v1
2v1

3

..

. ..
. ..

. ..
. ..

.

ðv i
1Þ

2�ðv i
3Þ

2 ðv i
2Þ

2�ðv i
3Þ

2 2v i
1v i

2 2v i
1v i

3 2v i
2v i

3

..

. ..
. ..

. ..
. ..

.

ðvn
1Þ

2�ðvn
3Þ

2 ðvn
2Þ

2�ðvn
3Þ

2 2vn
1vn

2 2vn
1vn

3 2vn
2vn

3

2666666664

3777777775

eA11eA22eA12eA13eA23

26666664

37777775�
D1

exp=CNH

..

.

Di
exp=CNH

..

.

Dn
exp=CNH

26666666664

37777777775
ð16Þ



Table 2
Quality factors Q s from RDC prediction for ab initio methods.

PDBa PATIb,c PALESb,c,e PATI-Eb,c,d Almondb,c,d PROLFITb,c,d

2ezx 0.26 (0.94) 0.27 (0.94) 0.19 (0.96) 0.20 (0.96) 0.12 (0.99)
3gb1 0.14 (0.99) 0.11 (0.99) 0.27 (0.96) 0.29 (0.95) 0.20 (0.97)
2oed 0.24 (0.98) 0.19 (0.98) 0.18 (0.98) 0.17 (0.98) 0.29 (0.97)
1b4c 0.22 (0.93) 0.22 (0.93) 0.43 (0.74) 0.42 (0.75) 0.55 (0.58)
2ezm 0.46 (0.66) 0.47 (0.66) 0.53 (0.56) 0.54 (0.54) 0.49 (0.61)
1cmz 0.32 (0.90) 0.30 (0.92) 0.38 (0.86) 0.39 (0.85) 0.37 (0.88)
1d3z 0.20 (0.93) 0.23 (0.91) 0.37 (0.81) 0.41 (0.77) 0.20 (0.91)
1e8l 0.31 (0.92) 0.31 (0.91) 0.42 (0.88) 0.43 (0.87) 0.26 (0.95)
1yjj 0.52 (0.75) 0.60 (0.67) 0.56 (0.76) 0.56 (0.75) 0.86 (0.34)

Mean 0.30 (0.89) 0.30 (0.88) 0.37 (0.84) 0.38 (0.83) 0.37 (0.80)

a The RCSB Protein Data Bank code for protein coordinates. First model from the
ensemble of NMR structures was used for the calculations. See Table 1 for the
names of the proteins.

b Values represent the scaled quality factor Qs between the predicted and
experimental data.

c Values in the parentheses represent the squared Pearson’s correlation coeffi-
cient, r2 (also known as coefficient of determination).

d MVE ellipsoidal representation was used.
e All PALES prediction calculations were run with options ‘-bic -H -dGrid 0.5 -rA

3.1’.
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where vi ¼ ½v i
1;v i

2;v i
3� is the normalized vector representing the ori-

entation of the ith bond relative to the molecular coordinate frame,
n is the number of bonds, and CNH is the value of CPQ in Eq. (2) for a
NH bond. The linear least-squares problem can be solved by stan-
dard methods; see, e.g., [30].

Note that eA can be decomposed into the experimental rotation
(eigenvectors) eV and experimental magnitudes (eigenvalues)eA1; eA2; eA3, where

eA ¼ eV eK eVT ¼ eV1
eV2

eV3

h i eA1 0 0
0 eA2 0
0 0 eA3

264
375 eV1

eV2
eV3

h iT
:

ð17Þ

The Q values for the experimental alignment tensor derived
using Eq. (16) are presented in Column 3 (‘LS’) in Table 1. The cor-
responding Q values for the best-fit alignment tensor derived from
PALES are presented in Column 4, labeled PALES-LS. Naturally,
Q s ¼ Q for both methods. It is worth emphasizing here that this
quality factor measures the actual quality of the experimental data
(i.e., how well they fit the theoretical equation for RDCs) and there-
fore provides the baseline Q value for subsequent evaluation of the
prediction methods. Note also that the values in the parentheses,
the relative error in the alignment tensor, confirm that Eq. (16)
gives the same experimental alignment tensor eA as the alignment
tensor derived using PALES’s best-fit algorithm.

Table 1 shows that the experimental RDC data are of high qual-
ity and consistent with the theoretical formulation of the RDC (Eqs.
(1) and (2)). This is not surprising given that these RDCs were used
as constraints in the calculation/refinement of the corresponding
protein structures. The quality of the agreement is illustrated in
Fig. 3A for Cyanovirin-N. (See also Supplementary material.)

The results of our ab initio calculations are presented in Table 2,
for PATI, PALES, and for the ellipsoidal approximation methods
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Fig. 3. Comparison of the predicted versus experimental 1H15N RDC values for the backbo
derived from PATI. (A) The experimental alignment tensor was derived directly from th
using the magnitude (eigenvalues) of the experimental alignment tensor and the tensor o
using the orientation (eigenvectors) of the experimental alignment tensor but PATI-pre
predicted from PATI simulation. The values of the squared Pearson’s correlation coefficien
rest of the molecules studied here can be found in the Supplementary material.
using the MVE model. The MVE ellipsoid data are used in this table
as this model provides on average a slightly more accurate estima-
tion of the alignment tensor compared to the other two equivalent
ellipsoid models considered in this study. (See Supplementary
material.) Surprisingly, the scaled quality factor Q s was rather high
for all prediction methods, indicating a generally marginal agree-
ment with experimental data, as illustrated in Fig. 3D and the Sup-
plementary material. PATI and PALES calculations gave on average
a slightly better agreement with the data compared to the other
methods. It should be emphasized here that PATI gives almost
identical results to PALES, as evident from Fig. 4. In order to under-
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stand the reasons for the observed inaccuracy in our predictions,
we now break down the contributions to the errors into those
due to the principal values of the alignment tensor and those due
to inaccuracy in its orientation.

In Table 3 we compare the Qs values for ‘synthetic’ alignment
tensors that have the same orientation as the ab initio calculated
tensors but the correct (experimental) principal values. We con-
structed these tensors by combining the rotation matrix V deter-
mined from our five models, GE, PCAE, MVE, PATI, and PALES,
with the experimental magnitudes eA1; eA2; eA3 of the alignment ten-
sor derived from eA. Such a comparison is expected to rank the
methods based on the accuracy of prediction of the tensor’s orien-
tation. Since the orientation of V for the equivalent-ellipsoid-based
methods is derived directly from the orientation of the ellipsoid,
this table also provides a direct comparison of the ellipsoid models.
Note that there are six different combinations for V, since it is un-
known a priori which eAi is associated with which Vj. The smallest
of the six Q s values is shown. Naturally, Qs ¼ Q in this case.

As evident from Table 3, correcting the principal values of the
alignment tensor while keeping its predicted orientation did not
improve the agreement with experimental data. (See also
Fig. 3B.) There are large variations among the various models in
the accuracy of the predicted orientation of the alignment tensor.
Of the three ellipsoid models tested here, MVE gave on average a
somewhat better orientation (as documented in the Supplemen-
tary material), while PATI and PALES yielded generally similar
results.
Table 3
Quality of prediction for the orientation of alignment tensor.

PDBa,d PATIb,c,d PALESb,c,d GEb,c,d MVEb,c,d PCAEb,c,d

2ezx 0.27 (10�) 0.28 (11�) 0.13 (5�) 0.11 (4�) 0.15 (5�)
3gb1 0.15 (17�) 0.12 (10�) 0.21 (12�) 0.21 (28�) 0.10 (14�)
2oed 0.23 (15�) 0.19 (13�) 0.33 (20�) 0.19 (14�) 0.25 (14�)
1b4c 0.25 (11�) 0.25 (11�) 0.68 (43�) 0.32 (15�) 0.62 (31�)
2ezm 0.37 (37�) 0.37 (39�) 0.45 (26�) 0.55 (33�) 0.41 (33�)
1cmz 0.31 (25�) 0.29 (23�) 0.33 (36�) 0.33 (24�) 0.36 (37�)
1d3z 0.19 (16�) 0.21 (16�) 0.42 (23�) 0.20 (29�) 0.29 (23�)
1e8l 0.38 (42�) 0.37 (41�) 0.33 (27�) 0.18 (16�) 0.33 (26�)
1yjj 0.53 (25�) 0.61 (30�) 0.87 (48�) 0.59 (26�) 0.85 (48�)

Mean 0.30 (22�) 0.30 (22�) 0.42 (27�) 0.30 (21�) 0.37 (26�)

a The RCSB Protein Data Bank code for protein coordinates. First model from the
ensemble of NMR structures was used for the calculations. See Table 1 for the
names of the proteins.

b Values represent the quality factor Q between the predicted and experimental
data.

c Values represent the scaled quality factor Qs between the predicted and
experimental data.

d Values in the parentheses represent the angle difference between the orienta-
tion of the experimental and predicted tensors (The angle was derived using the
axis-angle representation of rotation. See Appendix C for details.).
We then constructed ‘synthetic’ alignment tensors that have the
correct orientation (i.e., the eV matrices derived from the experi-
mental tensors eA) but the same principal values ðA1;A2;A3Þ as
the ab initio calculated tensors. Table 4 displays the Qs values for
five prediction methods, PATI, PALES, PATI-E, Almond, and PROL-
FIT. From this table, it is clear that using the correct orientation
of the tensor dramatically improved the agreement with experi-
mental data (cf. Table 2). This improvement is illustrated in
Fig. 3C for Cyanovirin-N and in the Supplementary material for
the other molecules.

Note that Column 3 (‘PATI-E’) and Column 5 (‘PROLFIT’) in Table
4 show that an additional degree of freedom provided by a fully
anisotropic ellipsoid versus an axially-symmetric prolate ellipsoid
approximation gives an improvement in the Q s.

Thus, the analysis presented above demonstrates that accurate
prediction of the orientation of the alignment tensor is critical for
the agreement with experimental data. Accurate prediction of the
principal components of the tensor is important, too. However,
when experimental RDCs are available, one can make an educated
guess, based on the observed histogram/distribution of the data,
about the magnitude of the tensor components (e.g., as described
in [39]) and scale the predicted alignment tensor appropriately,
whereas there is no obvious way to predict the orientation of the
tensor.
4. Conclusions

We have reformulated the planar barrier model as a numerical
integration problem and implemented it in a program called PATI.
Our method has accuracy similar to PALES but is computationally
more efficient and allows for finer control over numerical error.
In addition, the convex hull provides a simpler representation of
the surface, thus further increasing the computational efficiency
of the proposed method. This could allow PATI-based RDC predic-
tion to be incorporated into the existing structure determination/
refinement protocols. Because the molecular alignment tensor
(and hence the RDC) is sensitive to the overall size and shape of
the molecule, this would provide additional structural constraints
that could potentially improve the accuracy of structure determi-
nation by NMR.

We compared several methods (old and new) for the computa-
tion of an equivalent ellipsoid of a molecule. We examined the
accuracy of these equivalent ellipsoid models in predicting the
alignment tensor and showed that the minimal volume ellipsoid
Table 4
Quality of prediction for the magnitude of alignment tensor.

PDBa PATIb,c PALESb,c PATI-Eb,c,d Almondb,c,d PROLFITb,c,d

2ezx 0.04 (1.00) 0.04 (1.00) 0.04 (1.00) 0.03 (1.00) 0.12 (0.99)
3gb1 0.06 (1.00) 0.05 (1.00) 0.09 (0.99) 0.11 (0.99) 0.20 (0.96)
2oed 0.04 (1.00) 0.04 (1.00) 0.04 (1.00) 0.04 (1.00) 0.16 (0.99)
1b4c 0.12 (0.98) 0.12 (0.98) 0.19 (0.96) 0.19 (0.96) 0.33 (0.88)
2ezm 0.09 (0.99) 0.08 (0.99) 0.08 (0.99) 0.05 (1.00) 0.25 (0.90)
1cmz 0.08 (0.99) 0.08 (0.99) 0.12 (0.98) 0.14 (0.98) 0.16 (0.98)
1d3z 0.06 (0.99) 0.08 (0.99) 0.19 (0.93) 0.23 (0.90) 0.17 (0.93)
1e8l 0.11 (0.99) 0.10 (0.99) 0.06 (1.00) 0.06 (1.00) 0.20 (0.97)
1yjj 0.29 (0.92) 0.31 (0.90) 0.31 (0.90) 0.29 (0.91) 0.20 (0.96)

Mean 0.10 (0.98) 0.10 (0.98) 0.12 (0.97) 0.13 (0.97) 0.20 (0.95)

a The RCSB Protein Data Bank code for protein coordinates. First model from the
ensemble of NMR structures was used for the calculations. See Table 1 for the
names of the proteins.

b Values represent the scaled quality factor Qs between the predicted and
experimental data. The smallest of the six possible values is shown.

c Values in the parentheses represent the squared Pearson’s correlation coeffi-
cient, r2.

d MVE ellipsoidal representation was used.
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gives on average a slightly better prediction of the alignment ten-
sor orientation.

Finally, we compared all these methods against an extensive set
of experimental RDC data. The analysis of the discrepancy between
the experimental and predicted values emphasized the importance
of the accurate prediction of the orientation of the alignment ten-
sor. Possible sources of inaccuracy in ab initio alignment tensor
prediction are the dynamic nature (structural flexibility) of protein
molecules, not accounted for in the current prediction models, as
well as the fact that the simple steric barrier model might not fully
allow the correct alignment of all the molecules.
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Appendix A. Derivation of Eq. (9)

In this section we will simplify the expression for A for an arbi-
trary molecule from the quadruple integral of Eq. (7) to a double
integral.

Define the Euler z–y–z rotation matrix as Rða; b ; cÞ ¼ RzðcÞ
RyðbÞRzðaÞ, where

RzðaÞ ¼
cos a � sin a 0
sina cos a 0

0 0 1

264
375;

RyðbÞ ¼
cos b 0 sin b

0 1 0
� sin b 0 cos b

264
375;

RzðcÞ ¼
cos c � sin c 0
sin c cos c 0

0 0 1

264
375:

ðA1Þ

Multiplying the three matrices yields the full expression

Rða;b;cÞ

¼
cosccosbcosa�sincsina �cosccosbsina�sinccosa coscsinb

sinccosbcosaþcoscsina �sinccosbsinaþcosccosa sincsinb

�sinbcosa sinbsina cosb

264
375: ðA2Þ

We now write the equations for A11;A22;A33;A21;A31;A32, and N,
recalling that the Jacobian is J ¼ sin b=ð8p2Þ:

A11 ¼
1

16Np2

Z 2p

0

Z p

0

Z 2p

0

Z h

gða;b;cÞ
F11 sin bdzdadbdc;

A22 ¼
1

16Np2

Z 2p

0

Z p

0

Z 2p

0

Z h

gða;b;cÞ
F22 sin bdzdadbdc;

A33 ¼
1

16Np2

Z 2p

0

Z p

0

Z 2p

0

Z h

gða;b;cÞ
F33 sin bdzdadbdc;

A21 ¼
1

16Np2

Z 2p

0

Z p

0

Z 2p

0

Z h

gða;b;cÞ
F21 sin bdzdadbdc;

A31 ¼
1

16Np2

Z 2p

0

Z p

0

Z 2p

0

Z h

gða;b;cÞ
F31 sin bdzdadbdc;

A32 ¼
1

16Np2

Z 2p

0

Z p

0

Z 2p

0

Z h

gða;b;cÞ
F32 sin bdzdadbdc;

N ¼ 1
8p2

Z 2p

0

Z p

0

Z 2p

0

Z h

gða;b;cÞ
sinðbÞdzdadbdc:

ðA3Þ

We observe that c does not contribute to the vertical size of the
molecule, and redefine gða; b; cÞ as gða; bÞ. Integrating by c and z
first gives us
A11 ¼
Sc

16Np

Z 2p

0

Z p

0
ð3 cos2 a cos2 b� 3 cos aþ 1Þðh� gða;bÞÞ

� sin bdbda;

A22 ¼
Sc

16Np

Z 2p

0

Z p

0
�ð3 cos2 a cos2 b� 3 cos2 a� 3 cos2 bþ 2Þ

ðh� gða;bÞÞ sin bdbda;

A33 ¼
Sc

16Np

Z 2p

0

Z p

0
�ð3 cos2 b� 1Þðh� gða;bÞÞ sin bdbda;

A21 ¼
Sc

16Np

Z 2p

0

Z p

0
3 cos a sina sin2 bðh� gða;bÞÞ sin bdbda;

A31 ¼
Sc

16Np

Z 2p

0

Z p

0
3 cos a sin b cos bðh� gða; bÞÞ sin bdbda;

A32 ¼
Sc

16Np

Z 2p

0

Z p

0
�3 sina sin b cos aðh� gða;bÞÞ sin bdbda;

where

N ¼ 1
4p

Z 2p

0

Z p

0
ðh� gða;bÞÞ sin bdbda;

Sc ¼ 1� 3b2
3:

ðA4Þ

We perform a change of variable, u ¼ cosb, obtaining

A11 ¼
Sc

16Np

Z 2p

0

Z 1

�1
ð3u2 cos2 a� 3 cos2 aþ 1Þ

� ðh� gða; arccos uÞÞduda;

A22 ¼
Sc

16Np

Z 2p

0

Z 1

�1
ð3u2 cos2 aþ 3 cos2 a� 2Þ

� ðh� gða; arccos uÞÞduda;

A33 ¼
Sc

16Np

Z 2p

0

Z 1

�1
ð1� 3u2Þðh� gða; arccos uÞÞduda;

A21 ¼
3Sc

16Np

Z 2p

0

Z 1

�1
sin a cos að1� u2Þðh� gða; arccos uÞÞduda;

A31 ¼
3Sc

16Np

Z 2p

0

Z 1

�1
u cos a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

ðh� gða; arccos uÞÞduda;

A32 ¼
3Sc

16Np

Z 2p

0

Z 1

�1
�u sina

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

ðh� gða; arccos uÞÞduda;

N ¼ 1
4p

Z 2p

0

Z 1

�1
h� gða; arccos uÞduda;

Sc ¼ 1� 3b2
3:

ðA5Þ

Integrating the terms that do not involve g gives us Eq. (9).

Appendix B. Derivation of g for an ellipsoid

In this section we derive the analytical expression for g for an
arbitrary ellipsoid, following the notation of Section 2.4. Due to
the symmetry of the ellipsoid we consider only one octant in our
analysis, expressing all points p on the ellipsoid in that octant as

pðx; yÞ ¼ ðx; y; zðx; yÞÞ; ðB1Þ

where

zðx; yÞ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2 �
y2

b2

� �s
; ðB2Þ

for x 2 ½0; a� and y 2 0; b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2=a2Þ

ph i
.
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A rotation of the ellipsoid by Rða; b; cÞ transforms the coordi-
nates of these points into

x0 ¼ R11ða;b; cÞxþ R12ða;b; cÞyþ R13ða;b; cÞzðx; yÞ;
y0 ¼ R21ða; b; cÞxþ R22ða;b; cÞyþ R23ða; b; cÞzðx; yÞ;
z0 ¼ R31ða;b; cÞxþ R32ða;b; cÞyþ R33ða; b; cÞzðx; yÞ:

ðB3Þ

We observe that

gða;b; cÞ ¼ z0ðx�; y�Þ; ðB4Þ

where x�ða; b; cÞ and y�ða;b; cÞ minimize z0.
To find the minimum/maximum value of our rotated ellipsoid,

we solve rz0ðx; yÞ ¼ 0:

@z0ðx; yÞ
@x

¼ R31 � R33
cx

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2 � y2

b2

� �r ¼ 0; ðB5Þ

@z0ðx; yÞ
@y

¼ R32 � R33
cy

b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2

a2 � y2

b2

� �r ¼ 0: ðB6Þ

Let

x� ¼
R31a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
31a2 þ R2

32b2 þ R2
33c2

q ; ðB7Þ

y� ¼
R32b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
31a2 þ R2

32b2 þ R2
33c2

q : ðB8Þ

It is easy to verify that x� and y� solve Eqs. (B5) and (B6):

@z0ðx�; y�Þ
@x

¼ R31 � R33
cx�

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

�
a2 � y2

�
b2

� �r

¼ R31 � R33

cR31a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

31a2þR2
32b2þR2

33c2
p

a2R33cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

31a2þR2
32b2þR2

33c2
p ¼ 0; ðB9Þ

@z0ðx�; y�Þ
@y

¼ R32 � R33
cy�

b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
�

a2 � y2
�

b2

� �r

¼ R32 � R33

cR32b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

31a2þR2
32b2þR2

33c2
p

b2R33cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

31a2þR2
32b2þR2

33c2
p ¼ 0: ðB10Þ

Therefore, x�; y� minimizes z0, and the optimal value of z is

z� ¼
R33c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
31a2 þ R2

32b2 þ R2
33c2

q ; ðB11Þ

since R2
31 þ R2

32 þ R2
33 ¼ 1. Therefore, from Eqs. (B4) and (B3), our

solution is

gða;b; cÞ ¼ R31ða; b; cÞx� þ R32ða;b; cÞy� þ R33ða; b; cÞz�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

31a2 þ R2
32b2 þ R2

33c2

q
; ðB12Þ

where c is arbitrary for the Euler rotation defined in Eq. (A1).

Appendix C. Axis-angle representation

The axis-angle representation of a rotation parameterizes the
rotation by two values: a unit vector indicating the orientation of
the axis, u, and an angle, h, describing the magnitude of the rota-
tion about that axis. The direction of rotation around the axis u
is determined by the right-hand rule. One advantage of the axis-
angle representation over Euler angles representation is that one
can easily quantify the magnitude of the rotation by the size of
the rotation angle h.

Given a rotation matrix R, h is computed as

h ¼ arccos
1
2
ðR11 þ R22 þ R33 � 1Þ

� �
: ðC1Þ
Appendix D. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jmr.2009.07.028.
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